(true-equiv x y) is a ``degenerate'' equivalence for true-p objects.
Because of the way true-fix works, this is always just true.
Function:
(defun true-equiv$inline (x y) (declare (xargs :guard (and (true-p x) (true-p y)))) (equal (true-fix x) (true-fix y)))
Theorem:
(defthm true-equiv-is-an-equivalence (and (booleanp (true-equiv x y)) (true-equiv x x) (implies (true-equiv x y) (true-equiv y x)) (implies (and (true-equiv x y) (true-equiv y z)) (true-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm true-equiv-implies-equal-true-fix-1 (implies (true-equiv x x-equiv) (equal (true-fix x) (true-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm true-fix-under-true-equiv (true-equiv (true-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))