Basic equivalence relation for jbinop structures.
Function:
(defun jbinop-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jbinopp acl2::x) (jbinopp acl2::y)))) (equal (jbinop-fix acl2::x) (jbinop-fix acl2::y)))
Theorem:
(defthm jbinop-equiv-is-an-equivalence (and (booleanp (jbinop-equiv x y)) (jbinop-equiv x x) (implies (jbinop-equiv x y) (jbinop-equiv y x)) (implies (and (jbinop-equiv x y) (jbinop-equiv y z)) (jbinop-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jbinop-equiv-implies-equal-jbinop-fix-1 (implies (jbinop-equiv acl2::x x-equiv) (equal (jbinop-fix acl2::x) (jbinop-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jbinop-fix-under-jbinop-equiv (jbinop-equiv (jbinop-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jbinop-fix-1-forward-to-jbinop-equiv (implies (equal (jbinop-fix acl2::x) acl2::y) (jbinop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jbinop-fix-2-forward-to-jbinop-equiv (implies (equal acl2::x (jbinop-fix acl2::y)) (jbinop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jbinop-equiv-of-jbinop-fix-1-forward (implies (jbinop-equiv (jbinop-fix acl2::x) acl2::y) (jbinop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jbinop-equiv-of-jbinop-fix-2-forward (implies (jbinop-equiv acl2::x (jbinop-fix acl2::y)) (jbinop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)