Basic equivalence relation for jcmember structures.
Function:
(defun jcmember-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jcmemberp acl2::x) (jcmemberp acl2::y)))) (equal (jcmember-fix acl2::x) (jcmember-fix acl2::y)))
Theorem:
(defthm jcmember-equiv-is-an-equivalence (and (booleanp (jcmember-equiv x y)) (jcmember-equiv x x) (implies (jcmember-equiv x y) (jcmember-equiv y x)) (implies (and (jcmember-equiv x y) (jcmember-equiv y z)) (jcmember-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jcmember-equiv-implies-equal-jcmember-fix-1 (implies (jcmember-equiv acl2::x x-equiv) (equal (jcmember-fix acl2::x) (jcmember-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jcmember-fix-under-jcmember-equiv (jcmember-equiv (jcmember-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jcmember-fix-1-forward-to-jcmember-equiv (implies (equal (jcmember-fix acl2::x) acl2::y) (jcmember-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jcmember-fix-2-forward-to-jcmember-equiv (implies (equal acl2::x (jcmember-fix acl2::y)) (jcmember-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jcmember-equiv-of-jcmember-fix-1-forward (implies (jcmember-equiv (jcmember-fix acl2::x) acl2::y) (jcmember-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jcmember-equiv-of-jcmember-fix-2-forward (implies (jcmember-equiv acl2::x (jcmember-fix acl2::y)) (jcmember-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)