Basic equivalence relation for jclass structures.
Function:
(defun jclass-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jclassp acl2::x) (jclassp acl2::y)))) (equal (jclass-fix acl2::x) (jclass-fix acl2::y)))
Theorem:
(defthm jclass-equiv-is-an-equivalence (and (booleanp (jclass-equiv x y)) (jclass-equiv x x) (implies (jclass-equiv x y) (jclass-equiv y x)) (implies (and (jclass-equiv x y) (jclass-equiv y z)) (jclass-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jclass-equiv-implies-equal-jclass-fix-1 (implies (jclass-equiv acl2::x x-equiv) (equal (jclass-fix acl2::x) (jclass-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jclass-fix-under-jclass-equiv (jclass-equiv (jclass-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jclass-fix-1-forward-to-jclass-equiv (implies (equal (jclass-fix acl2::x) acl2::y) (jclass-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jclass-fix-2-forward-to-jclass-equiv (implies (equal acl2::x (jclass-fix acl2::y)) (jclass-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jclass-equiv-of-jclass-fix-1-forward (implies (jclass-equiv (jclass-fix acl2::x) acl2::y) (jclass-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jclass-equiv-of-jclass-fix-2-forward (implies (jclass-equiv acl2::x (jclass-fix acl2::y)) (jclass-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)