Basic equivalence relation for jfield structures.
Function:
(defun jfield-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jfieldp acl2::x) (jfieldp acl2::y)))) (equal (jfield-fix acl2::x) (jfield-fix acl2::y)))
Theorem:
(defthm jfield-equiv-is-an-equivalence (and (booleanp (jfield-equiv x y)) (jfield-equiv x x) (implies (jfield-equiv x y) (jfield-equiv y x)) (implies (and (jfield-equiv x y) (jfield-equiv y z)) (jfield-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jfield-equiv-implies-equal-jfield-fix-1 (implies (jfield-equiv acl2::x x-equiv) (equal (jfield-fix acl2::x) (jfield-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jfield-fix-under-jfield-equiv (jfield-equiv (jfield-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jfield-fix-1-forward-to-jfield-equiv (implies (equal (jfield-fix acl2::x) acl2::y) (jfield-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jfield-fix-2-forward-to-jfield-equiv (implies (equal acl2::x (jfield-fix acl2::y)) (jfield-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jfield-equiv-of-jfield-fix-1-forward (implies (jfield-equiv (jfield-fix acl2::x) acl2::y) (jfield-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jfield-equiv-of-jfield-fix-2-forward (implies (jfield-equiv acl2::x (jfield-fix acl2::y)) (jfield-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)