(f-aig-pullup a) constructs an FAIG representing a pullup resistor.
(f-aig-pullup a) → *
Function:
(defun f-aig-pullup (a) (declare (xargs :guard t)) (let ((__function__ 'f-aig-pullup)) (declare (ignorable __function__)) (b* (((faig a1 a0) a) (a-not-aig-floating (aig-or a1 a0)) (a-floating (aig-not a-not-aig-floating))) (cons (aig-or a-floating a1) a0))))
Theorem:
(defthm faig-eval-of-f-aig-pullup (equal (faig-eval (f-aig-pullup a) env) (f-aig-pullup (faig-eval a env))))
Theorem:
(defthm faig-fix-equiv-implies-equal-f-aig-pullup-1 (implies (faig-fix-equiv a a-equiv) (equal (f-aig-pullup a) (f-aig-pullup a-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-equiv-implies-faig-equiv-f-aig-pullup-1 (implies (faig-equiv a a-equiv) (faig-equiv (f-aig-pullup a) (f-aig-pullup a-equiv))) :rule-classes (:congruence))