Check if an oset is not empty, using an existential quantifier.
When this predicate is true, it provides an under-specified witness member of the set, which is useful for certain kinds of reasoning.
Theorem:
(defthm set::nonemptyp-suff (implies (in elem set) (set::nonemptyp set)))
Theorem:
(defthm set::booleanp-of-nonemptyp (b* ((yes/no (set::nonemptyp set))) (booleanp yes/no)) :rule-classes :rewrite)
Theorem:
(defthm set::nonemptyp-when-not-emptyp (implies (not (emptyp set)) (set::nonemptyp set)))
Theorem:
(defthm set::not-emptyp-when-nonemptyp (implies (set::nonemptyp set) (not (emptyp set))))
Theorem:
(defthm set::not-emptyp-to-nonemptyp (equal (not (emptyp set)) (set::nonemptyp set)))
Theorem:
(defthm set::nonempty-witness-from-not-emptyp (implies (not (emptyp set)) (in (set::nonempty-witness set) set)) :rule-classes ((:forward-chaining :trigger-terms ((emptyp set)))))