Function:
(defun const-annop (const) (declare (xargs :guard (constp const))) (declare (ignorable const)) (let ((__function__ 'const-annop)) (declare (ignorable __function__)) (const-case const :int (iconst-annop (const-int->unwrap const)) :float t :enum (ident-annop (const-enum->unwrap const)) :char t)))
Theorem:
(defthm booleanp-of-const-annop (b* ((fty::result (const-annop const))) (booleanp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm const-annop-of-const-fix-const (equal (const-annop (const-fix const)) (const-annop const)))
Theorem:
(defthm const-annop-const-equiv-congruence-on-const (implies (const-equiv const const-equiv) (equal (const-annop const) (const-annop const-equiv))) :rule-classes :congruence)