Function:
(defun ident-annop (ident) (declare (xargs :guard (identp ident))) (declare (ignorable ident)) (let ((__function__ 'ident-annop)) (declare (ignorable __function__)) t))
Theorem:
(defthm booleanp-of-ident-annop (b* ((fty::result (ident-annop ident))) (booleanp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm ident-annop-of-ident-fix-ident (equal (ident-annop (ident-fix ident)) (ident-annop ident)))
Theorem:
(defthm ident-annop-ident-equiv-congruence-on-ident (implies (ident-equiv ident ident-equiv) (equal (ident-annop ident) (ident-annop ident-equiv))) :rule-classes :congruence)