• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
          • 4v-sexpr-restrict-with-rw
          • 4vs-constructors
          • 4v-sexpr-compose-with-rw
          • 4v-sexpr-restrict
          • 4v-sexpr-alist-extract
          • 4v-sexpr-compose
          • 4v-nsexpr-p
          • 4v-sexpr-purebool-p
          • 4v-sexpr-<=
          • Sfaig
          • Sexpr-equivs
            • 4v-sexpr-alist-equiv
            • 4v-env-equiv
            • 4v-sexpr-list-equiv
            • 4v-sexpr-equiv
              • 4v-alists-agree
              • Key-and-env-equiv
              • 4v-sexpr-alist-equiv-alt
              • 4v-sexpr-alist-pair-equiv
              • 4v-cdr-consp-equiv
              • 4v-cdr-equiv
            • 3v-syntax-sexprp
            • Sexpr-rewriting
            • 4v-sexpr-ind
            • 4v-alist-extract
          • 4v-monotonicity
          • 4v-operations
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Sexpr-equivs

    4v-sexpr-equiv

    X === Y in the sense of sexprs if they always evaluate to the same thing under any possible environment.

    This is a universal equivalence, introduced using def-universal-equiv.

    Function: 4v-sexpr-equiv

    (defun 4v-sexpr-equiv (x y)
      (declare (xargs :non-executable t))
      (declare (xargs :guard t))
      (declare (xargs :non-executable t))
      (prog2$ (throw-nonexec-error '4v-sexpr-equiv
                                   (list x y))
              (let ((env (4v-sexpr-equiv-witness x y)))
                (and (equal (4v-sexpr-eval x env)
                            (4v-sexpr-eval y env))))))

    Definitions and Theorems

    Theorem: 4v-sexpr-equiv-necc

    (defthm 4v-sexpr-equiv-necc
      (implies (not (and (equal (4v-sexpr-eval x env)
                                (4v-sexpr-eval y env))))
               (not (4v-sexpr-equiv x y))))

    Theorem: 4v-sexpr-equiv-witnessing-witness-rule-correct

    (defthm 4v-sexpr-equiv-witnessing-witness-rule-correct
      (implies (not ((lambda (env y x)
                       (not (equal (4v-sexpr-eval x env)
                                   (4v-sexpr-eval y env))))
                     (4v-sexpr-equiv-witness x y)
                     y x))
               (4v-sexpr-equiv x y))
      :rule-classes nil)

    Theorem: 4v-sexpr-equiv-instancing-instance-rule-correct

    (defthm 4v-sexpr-equiv-instancing-instance-rule-correct
      (implies (not (equal (4v-sexpr-eval x env)
                           (4v-sexpr-eval y env)))
               (not (4v-sexpr-equiv x y)))
      :rule-classes nil)

    Theorem: 4v-sexpr-equiv-is-an-equivalence

    (defthm 4v-sexpr-equiv-is-an-equivalence
      (and (booleanp (4v-sexpr-equiv x y))
           (4v-sexpr-equiv x x)
           (implies (4v-sexpr-equiv x y)
                    (4v-sexpr-equiv y x))
           (implies (and (4v-sexpr-equiv x y)
                         (4v-sexpr-equiv y z))
                    (4v-sexpr-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: 4v-sexpr-equiv-implies-equal-4v-sexpr-eval-1

    (defthm 4v-sexpr-equiv-implies-equal-4v-sexpr-eval-1
      (implies (4v-sexpr-equiv x x-equiv)
               (equal (4v-sexpr-eval x env)
                      (4v-sexpr-eval x-equiv env)))
      :rule-classes (:congruence))

    Theorem: 4v-sexpr-equiv-implies-iff-4v-sexpr-<=-2

    (defthm 4v-sexpr-equiv-implies-iff-4v-sexpr-<=-2
      (implies (4v-sexpr-equiv b b-equiv)
               (iff (4v-sexpr-<= a b)
                    (4v-sexpr-<= a b-equiv)))
      :rule-classes (:congruence))

    Theorem: 4v-sexpr-equiv-implies-iff-4v-sexpr-<=-1

    (defthm 4v-sexpr-equiv-implies-iff-4v-sexpr-<=-1
      (implies (4v-sexpr-equiv a a-equiv)
               (iff (4v-sexpr-<= a b)
                    (4v-sexpr-<= a-equiv b)))
      :rule-classes (:congruence))

    Theorem: 4v-sexpr-equiv-implies-4v-sexpr-equiv-4v-sexpr-restrict-1

    (defthm 4v-sexpr-equiv-implies-4v-sexpr-equiv-4v-sexpr-restrict-1
      (implies (4v-sexpr-equiv x x-equiv)
               (4v-sexpr-equiv (4v-sexpr-restrict x al)
                               (4v-sexpr-restrict x-equiv al)))
      :rule-classes (:congruence))

    Theorem: 4v-sexpr-equiv-implies-4v-sexpr-equiv-4v-sexpr-compose-1

    (defthm 4v-sexpr-equiv-implies-4v-sexpr-equiv-4v-sexpr-compose-1
      (implies (4v-sexpr-equiv x x-equiv)
               (4v-sexpr-equiv (4v-sexpr-compose x al)
                               (4v-sexpr-compose x-equiv al)))
      :rule-classes (:congruence))