• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
          • Vl-module
          • Vl-vardecl
          • Expressions
          • Vl-fundecl
          • Vl-assign
          • Vl-gateinst
          • Vl-modinst
          • Vl-commentmap
          • Vl-portdecl
          • Vl-taskdecl
          • Vl-design
          • Vl-interface
          • Vl-plainarglist->exprs
          • Vl-taskdecllist->names
          • Vl-fundecllist->names
          • Vl-package
          • Vl-port
          • Vl-udp
          • Vl-paramdecl
          • Vl-genelement
          • Vl-cycledelayrange
          • Vl-namedarg
          • Vl-sort-blockitems-aux
          • Vl-distitem
          • Vl-gatedelay
          • Vl-repetition
          • Vl-typedef
          • Vl-range
          • Vl-gatestrength
          • Vl-program
          • Vl-config
          • Vl-always
          • Vl-datatype-update-dims
          • Vl-import
          • Vl-enumbasetype
          • Vl-repeateventcontrol
          • Vl-paramargs
          • Vl-initial
          • Vl-eventcontrol
          • Vl-udpsymbol-p
          • Vl-maybe-range
          • Vl-maybe-nettypename
          • Vl-maybe-gatestrength
          • Vl-maybe-gatedelay
          • Vl-maybe-delayoreventcontrol
          • Vl-alias
          • Maybe-string-fix
          • Vl-maybe-packeddimension
          • Vl-fwdtypedef
          • Vl-evatom
          • Vl-packeddimension-p
          • Vl-maybe-udpsymbol
          • Vl-maybe-module
          • Vl-maybe-direction
          • Vl-maybe-datatype
          • Vl-maybe-cstrength
          • Vl-direction-p
          • Vl-arguments
          • Vl-maybe-design
          • Vl-udpline
          • Vl-exprdist
          • Vl-context1
          • Vl-genvar
          • Vl-enumitem
          • Vl-datatype-update-udims
          • Vl-datatype-update-pdims
          • Vl-modelement
          • Vl-udpedge
          • Vl-delaycontrol
          • Vl-context
          • Vl-sort-blockitems
          • Vl-distweighttype-p
          • Vl-ctxelement->loc
          • Vl-blockitem
          • Vl-vardecllist
          • Vl-module->ifports
          • Vl-modelement->loc
          • Vl-ctxelement
          • Vl-coretypename-p
          • Vl-packeddimensionlist
          • Vl-modelementlist->genelements
          • Vl-gatetype-p
          • Vl-paramdecllist
          • Vl-lifetime-p
          • Vl-datatype->udims
          • Vl-datatype->pdims
          • Vl-timeunit-p
          • Vl-repetitiontype-p
          • Vl-port->name
          • Vl-importlist
          • Vl-genelement->loc
          • Vl-delayoreventcontrol
          • Vl-cstrength-p
          • Statements
          • Vl-udpentry-p
          • Vl-packeddimension-fix
          • Vl-nettypename-p
          • Vl-portdecllist
          • Vl-port->loc
          • Vl-enumbasekind-fix
          • Vl-arguments->args
          • Vl-taskdecllist
          • Vl-portlist
          • Vl-importpart-p
          • Vl-importpart-fix
          • Vl-fundecllist
          • Vl-blockstmt-p
          • Vl-assignlist
          • Vl-alwaystype-p
          • Vl-typedeflist
          • Vl-syntaxversion-p
          • Vl-randomqualifier-p
          • Vl-modinstlist
          • Vl-gateinstlist
          • Vl-blockitemlist
          • Vl-udptable
            • Vl-udptable-fix
              • Vl-udptable-equiv
              • Vl-udptable-p
            • Vl-udplist
            • Vl-udpentrylist
            • Vl-programlist
            • Vl-paramvaluelist
            • Vl-packagelist
            • Vl-namedparamvaluelist
            • Vl-namedarglist
            • Vl-modulelist
            • Vl-modportlist
            • Vl-modport-portlist
            • Vl-interfacelist
            • Vl-initiallist
            • Vl-genvarlist
            • Vl-fwdtypedeflist
            • Vl-evatomlist
            • Vl-enumitemlist
            • Vl-distlist
            • Vl-configlist
            • Vl-alwayslist
            • Vl-aliaslist
            • Vl-regularportlist
            • Vl-rangelist-list
            • Vl-rangelist
            • Vl-paramdecllist-list
            • Vl-modelementlist
            • Vl-maybe-range-list
            • Vl-interfaceportlist
            • Vl-argumentlist
            • Data-types
          • Getting-started
          • Utilities
          • Loader
          • Transforms
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-udptable

    Vl-udptable-fix

    (vl-udptable-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (vl-udptable-fix x) → fty::newx
    Arguments
    x — Guard (vl-udptable-p x).
    Returns
    fty::newx — Type (vl-udptable-p fty::newx).

    In the logic, we apply vl-udpline-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vl-udptable-fix$inline

    (defun vl-udptable-fix$inline (x)
      (declare (xargs :guard (vl-udptable-p x)))
      (let ((__function__ 'vl-udptable-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (cons (vl-udpline-fix (car x))
                     (vl-udptable-fix (cdr x))))
             :exec x)))

    Theorem: vl-udptable-p-of-vl-udptable-fix

    (defthm vl-udptable-p-of-vl-udptable-fix
      (b* ((fty::newx (vl-udptable-fix$inline x)))
        (vl-udptable-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-udptable-fix-when-vl-udptable-p

    (defthm vl-udptable-fix-when-vl-udptable-p
      (implies (vl-udptable-p x)
               (equal (vl-udptable-fix x) x)))

    Function: vl-udptable-equiv$inline

    (defun vl-udptable-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-udptable-p acl2::x)
                                  (vl-udptable-p acl2::y))))
      (equal (vl-udptable-fix acl2::x)
             (vl-udptable-fix acl2::y)))

    Theorem: vl-udptable-equiv-is-an-equivalence

    (defthm vl-udptable-equiv-is-an-equivalence
      (and (booleanp (vl-udptable-equiv x y))
           (vl-udptable-equiv x x)
           (implies (vl-udptable-equiv x y)
                    (vl-udptable-equiv y x))
           (implies (and (vl-udptable-equiv x y)
                         (vl-udptable-equiv y z))
                    (vl-udptable-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-udptable-equiv-implies-equal-vl-udptable-fix-1

    (defthm vl-udptable-equiv-implies-equal-vl-udptable-fix-1
      (implies (vl-udptable-equiv acl2::x x-equiv)
               (equal (vl-udptable-fix acl2::x)
                      (vl-udptable-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-udptable-fix-under-vl-udptable-equiv

    (defthm vl-udptable-fix-under-vl-udptable-equiv
      (vl-udptable-equiv (vl-udptable-fix acl2::x)
                         acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-udptable-fix-1-forward-to-vl-udptable-equiv

    (defthm equal-of-vl-udptable-fix-1-forward-to-vl-udptable-equiv
      (implies (equal (vl-udptable-fix acl2::x)
                      acl2::y)
               (vl-udptable-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-udptable-fix-2-forward-to-vl-udptable-equiv

    (defthm equal-of-vl-udptable-fix-2-forward-to-vl-udptable-equiv
      (implies (equal acl2::x (vl-udptable-fix acl2::y))
               (vl-udptable-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-udptable-equiv-of-vl-udptable-fix-1-forward

    (defthm vl-udptable-equiv-of-vl-udptable-fix-1-forward
      (implies (vl-udptable-equiv (vl-udptable-fix acl2::x)
                                  acl2::y)
               (vl-udptable-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-udptable-equiv-of-vl-udptable-fix-2-forward

    (defthm vl-udptable-equiv-of-vl-udptable-fix-2-forward
      (implies (vl-udptable-equiv acl2::x (vl-udptable-fix acl2::y))
               (vl-udptable-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vl-udptable-fix-x-under-vl-udpline-equiv

    (defthm car-of-vl-udptable-fix-x-under-vl-udpline-equiv
      (vl-udpline-equiv (car (vl-udptable-fix acl2::x))
                        (car acl2::x)))

    Theorem: car-vl-udptable-equiv-congruence-on-x-under-vl-udpline-equiv

    (defthm car-vl-udptable-equiv-congruence-on-x-under-vl-udpline-equiv
      (implies (vl-udptable-equiv acl2::x x-equiv)
               (vl-udpline-equiv (car acl2::x)
                                 (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-vl-udptable-fix-x-under-vl-udptable-equiv

    (defthm cdr-of-vl-udptable-fix-x-under-vl-udptable-equiv
      (vl-udptable-equiv (cdr (vl-udptable-fix acl2::x))
                         (cdr acl2::x)))

    Theorem: cdr-vl-udptable-equiv-congruence-on-x-under-vl-udptable-equiv

    (defthm
          cdr-vl-udptable-equiv-congruence-on-x-under-vl-udptable-equiv
      (implies (vl-udptable-equiv acl2::x x-equiv)
               (vl-udptable-equiv (cdr acl2::x)
                                  (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-udpline-fix-x-under-vl-udptable-equiv

    (defthm cons-of-vl-udpline-fix-x-under-vl-udptable-equiv
      (vl-udptable-equiv (cons (vl-udpline-fix acl2::x) acl2::y)
                         (cons acl2::x acl2::y)))

    Theorem: cons-vl-udpline-equiv-congruence-on-x-under-vl-udptable-equiv

    (defthm
          cons-vl-udpline-equiv-congruence-on-x-under-vl-udptable-equiv
      (implies (vl-udpline-equiv acl2::x x-equiv)
               (vl-udptable-equiv (cons acl2::x acl2::y)
                                  (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-udptable-fix-y-under-vl-udptable-equiv

    (defthm cons-of-vl-udptable-fix-y-under-vl-udptable-equiv
      (vl-udptable-equiv (cons acl2::x (vl-udptable-fix acl2::y))
                         (cons acl2::x acl2::y)))

    Theorem: cons-vl-udptable-equiv-congruence-on-y-under-vl-udptable-equiv

    (defthm
         cons-vl-udptable-equiv-congruence-on-y-under-vl-udptable-equiv
      (implies (vl-udptable-equiv acl2::y y-equiv)
               (vl-udptable-equiv (cons acl2::x acl2::y)
                                  (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-vl-udptable-fix

    (defthm consp-of-vl-udptable-fix
      (equal (consp (vl-udptable-fix acl2::x))
             (consp acl2::x)))

    Theorem: vl-udptable-fix-of-cons

    (defthm vl-udptable-fix-of-cons
      (equal (vl-udptable-fix (cons a x))
             (cons (vl-udpline-fix a)
                   (vl-udptable-fix x))))

    Theorem: len-of-vl-udptable-fix

    (defthm len-of-vl-udptable-fix
      (equal (len (vl-udptable-fix acl2::x))
             (len acl2::x)))

    Theorem: vl-udptable-fix-of-append

    (defthm vl-udptable-fix-of-append
      (equal (vl-udptable-fix (append std::a std::b))
             (append (vl-udptable-fix std::a)
                     (vl-udptable-fix std::b))))

    Theorem: vl-udptable-fix-of-repeat

    (defthm vl-udptable-fix-of-repeat
      (equal (vl-udptable-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (vl-udpline-fix acl2::x))))

    Theorem: nth-of-vl-udptable-fix

    (defthm nth-of-vl-udptable-fix
      (equal (nth acl2::n (vl-udptable-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (vl-udpline-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: vl-udptable-equiv-implies-vl-udptable-equiv-append-1

    (defthm vl-udptable-equiv-implies-vl-udptable-equiv-append-1
      (implies (vl-udptable-equiv acl2::x fty::x-equiv)
               (vl-udptable-equiv (append acl2::x acl2::y)
                                  (append fty::x-equiv acl2::y)))
      :rule-classes (:congruence))

    Theorem: vl-udptable-equiv-implies-vl-udptable-equiv-append-2

    (defthm vl-udptable-equiv-implies-vl-udptable-equiv-append-2
      (implies (vl-udptable-equiv acl2::y fty::y-equiv)
               (vl-udptable-equiv (append acl2::x acl2::y)
                                  (append acl2::x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-udptable-equiv-implies-vl-udptable-equiv-nthcdr-2

    (defthm vl-udptable-equiv-implies-vl-udptable-equiv-nthcdr-2
      (implies (vl-udptable-equiv acl2::l l-equiv)
               (vl-udptable-equiv (nthcdr acl2::n acl2::l)
                                  (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-udptable-equiv-implies-vl-udptable-equiv-take-2

    (defthm vl-udptable-equiv-implies-vl-udptable-equiv-take-2
      (implies (vl-udptable-equiv acl2::l l-equiv)
               (vl-udptable-equiv (take acl2::n acl2::l)
                                  (take acl2::n l-equiv)))
      :rule-classes (:congruence))