• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
          • Omaps
          • Directed-untranslate
          • Include-book-paths
          • Ubi
          • Numbered-names
          • Digits-any-base
            • Defdigits
            • Nat=>lendian*
            • Group-lendian
            • Defdigit-grouping
            • Ungroup-lendian
            • Lendian=>nat
            • Defthm-dab-return-types
            • Bendian=>nat
            • Nat=>bendian*
            • Trim-bendian*
            • Trim-lendian*
              • Nat=>lendian
              • Dab-digit-list-fix
              • Nat=>bendian
              • Ungroup-bendian
              • Group-bendian
              • Digits=>nat-injectivity-theorems
              • Dab-digit-listp
              • Nat=>lendian+
              • Dab-basep
              • Nat=>bendian+
              • Digits=>nat=>digits-inverses-theorems
              • Trim-lendian+
              • Trim-bendian+
              • Nat=>digits=>nat-inverses-theorems
              • Dab-digitp
              • Group/ungroup-inverses-theorems
              • Dab-digit-fix
              • Nat=>digits-injectivity-theorems
              • Dab-base
              • Digits-any-base-pow2
              • Dab-base-fix
            • Context-message-pair
            • With-auto-termination
            • Make-termination-theorem
            • Theorems-about-true-list-lists
            • Checkpoint-list
            • Sublis-expr+
            • Integers-from-to
            • Prove$
            • Defthm<w
            • System-utilities-non-built-in
            • Integer-range-fix
            • Minimize-ruler-extenders
            • Add-const-to-untranslate-preprocess
            • Unsigned-byte-fix
            • Signed-byte-fix
            • Defthmr
            • Paired-names
            • Unsigned-byte-list-fix
            • Signed-byte-list-fix
            • Show-books
            • Skip-in-book
            • Typed-tuplep
            • List-utilities
            • Checkpoint-list-pretty
            • Defunt
            • Keyword-value-list-to-alist
            • Magic-macroexpand
            • Top-command-number-fn
            • Bits-as-digits-in-base-2
            • Show-checkpoint-list
            • Ubyte11s-as-digits-in-base-2048
            • Named-formulas
            • Bytes-as-digits-in-base-256
            • String-utilities
            • Make-keyword-value-list-from-keys-and-value
            • Defmacroq
            • Integer-range-listp
            • Apply-fn-if-known
            • Trans-eval-error-triple
            • Checkpoint-info-list
            • Previous-subsumer-hints
            • Fms!-lst
            • Zp-listp
            • Trans-eval-state
            • Injections
            • Doublets-to-alist
            • Theorems-about-osets
            • Typed-list-utilities
            • Book-runes-alist
            • User-interface
            • Bits/ubyte11s-digit-grouping
            • Bits/bytes-digit-grouping
            • Message-utilities
            • Subsetp-eq-linear
            • Oset-utilities
            • Strict-merge-sort-<
            • Miscellaneous-enumerations
            • Maybe-unquote
            • Thm<w
            • Defthmd<w
            • Io-utilities
          • Set
          • Soft
          • C
          • Bv
          • Imp-language
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Digits-any-base

    Trim-lendian*

    Remove all the most significant zero digits from a little-endian representation.

    Signature
    (trim-lendian* digits) → trimmed-digits
    Arguments
    digits — Guard (nat-listp digits).
    Returns
    trimmed-digits — Type (nat-listp trimmed-digits).

    This produces a minimal-length representation with the same value.

    This operation does not depend on a base. It maps lists of natural numbers to lists of natural numbers, where the natural numbers may be digit in any suitable base.

    See also trim-lendian+.

    Definitions and Theorems

    Function: trim-lendian*

    (defun trim-lendian* (digits)
      (declare (xargs :guard (nat-listp digits)))
      (let ((__function__ 'trim-lendian*))
        (declare (ignorable __function__))
        (rev (trim-bendian* (rev digits)))))

    Theorem: nat-listp-of-trim-lendian*

    (defthm nat-listp-of-trim-lendian*
      (b* ((trimmed-digits (trim-lendian* digits)))
        (nat-listp trimmed-digits))
      :rule-classes :rewrite)

    Theorem: trim-lendian*-of-true-list-fix

    (defthm trim-lendian*-of-true-list-fix
      (equal (trim-lendian* (true-list-fix digits))
             (trim-lendian* digits)))

    Theorem: trim-lendian*-when-zp-listp

    (defthm trim-lendian*-when-zp-listp
      (implies (zp-listp digits)
               (equal (trim-lendian* digits) nil)))

    Theorem: trim-lendian*-of-append-zeros

    (defthm trim-lendian*-of-append-zeros
      (implies (zp-listp zeros)
               (equal (trim-lendian* (append digits zeros))
                      (trim-lendian* digits))))

    Theorem: trim-lendian*-when-no-ending-0

    (defthm trim-lendian*-when-no-ending-0
      (implies (not (zp (car (last digits))))
               (equal (trim-lendian* digits)
                      (nat-list-fix digits))))

    Theorem: trim-lendian*-of-nat=>lendian*

    (defthm trim-lendian*-of-nat=>lendian*
      (equal (trim-lendian* (nat=>lendian* base nat))
             (nat=>lendian* base nat)))

    Theorem: lendian=>nat-of-trim-lendian*

    (defthm lendian=>nat-of-trim-lendian*
      (equal (lendian=>nat base (trim-lendian* digits))
             (lendian=>nat base digits)))

    Theorem: len-of-trim-lendian*-upper-bound

    (defthm len-of-trim-lendian*-upper-bound
      (<= (len (trim-lendian* digits))
          (len digits))
      :rule-classes :linear)

    Theorem: append-of-repeat-and-trim-lendian*

    (defthm append-of-repeat-and-trim-lendian*
      (equal (append (trim-lendian* digits)
                     (repeat (- (len digits)
                                (len (trim-lendian* digits)))
                             0))
             (nat-list-fix digits)))

    Theorem: trim-lendian*-of-append

    (defthm trim-lendian*-of-append
      (equal (trim-lendian* (append lodigits hidigits))
             (if (zp-listp (true-list-fix hidigits))
                 (trim-lendian* lodigits)
               (append (nat-list-fix lodigits)
                       (trim-lendian* hidigits)))))

    Theorem: trim-lendian*-of-cons

    (defthm trim-lendian*-of-cons
      (implies (and (natp digit) (nat-listp digits))
               (equal (trim-lendian* (cons digit digits))
                      (if (zp-listp digits)
                          (if (zp digit) nil (list digit))
                        (cons digit (trim-lendian* digits))))))

    Theorem: trim-lendian*-iff-not-zp-listp

    (defthm trim-lendian*-iff-not-zp-listp
      (implies (true-listp digits)
               (iff (trim-lendian* digits)
                    (not (zp-listp digits)))))

    Theorem: trim-lendian*-of-nat-list-fix-digits

    (defthm trim-lendian*-of-nat-list-fix-digits
      (equal (trim-lendian* (nat-list-fix digits))
             (trim-lendian* digits)))

    Theorem: trim-lendian*-nat-list-equiv-congruence-on-digits

    (defthm trim-lendian*-nat-list-equiv-congruence-on-digits
      (implies (nat-list-equiv digits digits-equiv)
               (equal (trim-lendian* digits)
                      (trim-lendian* digits-equiv)))
      :rule-classes :congruence)