• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
        • Semantics
        • Abstract-syntax
          • Aexp
          • Bexp
          • Comm
            • Comm-case
            • Comm-if
            • Comm-equiv
              • Comm-while
              • Comm-asg
              • Commp
              • Comm-kind
              • Comm-fix
              • Comm-count
            • Comm-list
            • Command-fixtypes
          • Interpreter
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Riscv
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Bigmems
        • Builtins
        • Execloader
        • Aleo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Comm

    Comm-equiv

    Basic equivalence relation for comm structures.

    Definitions and Theorems

    Function: comm-equiv$inline

    (defun comm-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (commp acl2::x) (commp acl2::y))))
      (equal (comm-fix acl2::x)
             (comm-fix acl2::y)))

    Theorem: comm-equiv-is-an-equivalence

    (defthm comm-equiv-is-an-equivalence
      (and (booleanp (comm-equiv x y))
           (comm-equiv x x)
           (implies (comm-equiv x y)
                    (comm-equiv y x))
           (implies (and (comm-equiv x y) (comm-equiv y z))
                    (comm-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: comm-equiv-implies-equal-comm-fix-1

    (defthm comm-equiv-implies-equal-comm-fix-1
      (implies (comm-equiv acl2::x x-equiv)
               (equal (comm-fix acl2::x)
                      (comm-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: comm-fix-under-comm-equiv

    (defthm comm-fix-under-comm-equiv
      (comm-equiv (comm-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-comm-fix-1-forward-to-comm-equiv

    (defthm equal-of-comm-fix-1-forward-to-comm-equiv
      (implies (equal (comm-fix acl2::x) acl2::y)
               (comm-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-comm-fix-2-forward-to-comm-equiv

    (defthm equal-of-comm-fix-2-forward-to-comm-equiv
      (implies (equal acl2::x (comm-fix acl2::y))
               (comm-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: comm-equiv-of-comm-fix-1-forward

    (defthm comm-equiv-of-comm-fix-1-forward
      (implies (comm-equiv (comm-fix acl2::x) acl2::y)
               (comm-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: comm-equiv-of-comm-fix-2-forward

    (defthm comm-equiv-of-comm-fix-2-forward
      (implies (comm-equiv acl2::x (comm-fix acl2::y))
               (comm-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)