• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
          • Inequalities-of-products
          • Basic-product-normalization
          • Inequalities-of-reciprocals
          • Arithmetic/natp-posp
          • Basic-expt-normalization
          • More-rational-identities
          • Inequalities-of-exponents
            • Basic-sum-normalization
            • Basic-rational-identities
            • Basic-expt-type-rules
            • Inequalities-of-sums
            • Basic-products-with-negations
            • Fc
          • Number-theory
          • Proof-by-arith
          • Arith-equivs
          • Include-an-arithmetic-book
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
      • Testing-utilities
    • Arithmetic-1

    Inequalities-of-exponents

    Rules for resolving inequalities between exponents.

    Definitions and Theorems

    Theorem: expt->-1

    (defthm expt->-1
      (implies (and (< 1 r)
                    (< 0 i)
                    (fc (real/rationalp r))
                    (fc (integerp i)))
               (< 1 (expt r i)))
      :rule-classes :linear)

    Theorem: expt-is-increasing-for-base>1

    (defthm expt-is-increasing-for-base>1
      (implies (and (< 1 r)
                    (< i j)
                    (fc (real/rationalp r))
                    (fc (integerp i))
                    (fc (integerp j)))
               (< (expt r i) (expt r j)))
      :rule-classes (:rewrite :linear))

    Theorem: expt-is-decreasing-for-pos-base<1

    (defthm expt-is-decreasing-for-pos-base<1
      (implies (and (< 0 r)
                    (< r 1)
                    (< i j)
                    (fc (real/rationalp r))
                    (fc (integerp i))
                    (fc (integerp j)))
               (< (expt r j) (expt r i))))

    Theorem: expt-is-weakly-increasing-for-base>1

    (defthm expt-is-weakly-increasing-for-base>1
      (implies (and (< 1 r)
                    (<= i j)
                    (fc (real/rationalp r))
                    (fc (integerp i))
                    (fc (integerp j)))
               (<= (expt r i) (expt r j))))

    Theorem: expt-is-weakly-decreasing-for-pos-base<1

    (defthm expt-is-weakly-decreasing-for-pos-base<1
      (implies (and (< 0 r)
                    (< r 1)
                    (<= i j)
                    (fc (real/rationalp r))
                    (fc (integerp i))
                    (fc (integerp j)))
               (<= (expt r j) (expt r i))))