Basic equivalence relation for reference-value structures.
Function:
(defun reference-value-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (reference-valuep acl2::x) (reference-valuep acl2::y)))) (equal (reference-value-fix acl2::x) (reference-value-fix acl2::y)))
Theorem:
(defthm reference-value-equiv-is-an-equivalence (and (booleanp (reference-value-equiv x y)) (reference-value-equiv x x) (implies (reference-value-equiv x y) (reference-value-equiv y x)) (implies (and (reference-value-equiv x y) (reference-value-equiv y z)) (reference-value-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm reference-value-equiv-implies-equal-reference-value-fix-1 (implies (reference-value-equiv acl2::x x-equiv) (equal (reference-value-fix acl2::x) (reference-value-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm reference-value-fix-under-reference-value-equiv (reference-value-equiv (reference-value-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-reference-value-fix-1-forward-to-reference-value-equiv (implies (equal (reference-value-fix acl2::x) acl2::y) (reference-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-reference-value-fix-2-forward-to-reference-value-equiv (implies (equal acl2::x (reference-value-fix acl2::y)) (reference-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm reference-value-equiv-of-reference-value-fix-1-forward (implies (reference-value-equiv (reference-value-fix acl2::x) acl2::y) (reference-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm reference-value-equiv-of-reference-value-fix-2-forward (implies (reference-value-equiv acl2::x (reference-value-fix acl2::y)) (reference-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)