Remainder of a value of type
Function:
(defun rem-sllong-ulong (x y) (declare (xargs :guard (and (sllongp x) (ulongp y) (rem-sllong-ulong-okp x y)))) (rem-ullong-ullong (ullong-from-sllong x) (ullong-from-ulong y)))
Theorem:
(defthm ullongp-of-rem-sllong-ulong (ullongp (rem-sllong-ulong x y)))
Theorem:
(defthm rem-sllong-ulong-of-sllong-fix-x (equal (rem-sllong-ulong (sllong-fix x) y) (rem-sllong-ulong x y)))
Theorem:
(defthm rem-sllong-ulong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (rem-sllong-ulong x y) (rem-sllong-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm rem-sllong-ulong-of-ulong-fix-y (equal (rem-sllong-ulong x (ulong-fix y)) (rem-sllong-ulong x y)))
Theorem:
(defthm rem-sllong-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (rem-sllong-ulong x y) (rem-sllong-ulong x y-equiv))) :rule-classes :congruence)