Greater-than relation of a value of type
Function:
(defun gt-sllong-sshort (x y) (declare (xargs :guard (and (sllongp x) (sshortp y)))) (gt-sllong-sllong x (sllong-from-sshort y)))
Theorem:
(defthm sintp-of-gt-sllong-sshort (sintp (gt-sllong-sshort x y)))
Theorem:
(defthm gt-sllong-sshort-of-sllong-fix-x (equal (gt-sllong-sshort (sllong-fix x) y) (gt-sllong-sshort x y)))
Theorem:
(defthm gt-sllong-sshort-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (gt-sllong-sshort x y) (gt-sllong-sshort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-sllong-sshort-of-sshort-fix-y (equal (gt-sllong-sshort x (sshort-fix y)) (gt-sllong-sshort x y)))
Theorem:
(defthm gt-sllong-sshort-sshort-equiv-congruence-on-y (implies (sshort-equiv y y-equiv) (equal (gt-sllong-sshort x y) (gt-sllong-sshort x y-equiv))) :rule-classes :congruence)