Bitwise conjunction of a value of type
Function:
(defun bitand-sshort-slong (x y) (declare (xargs :guard (and (sshortp x) (slongp y)))) (bitand-slong-slong (slong-from-sshort x) y))
Theorem:
(defthm slongp-of-bitand-sshort-slong (slongp (bitand-sshort-slong x y)))
Theorem:
(defthm bitand-sshort-slong-of-sshort-fix-x (equal (bitand-sshort-slong (sshort-fix x) y) (bitand-sshort-slong x y)))
Theorem:
(defthm bitand-sshort-slong-sshort-equiv-congruence-on-x (implies (sshort-equiv x x-equiv) (equal (bitand-sshort-slong x y) (bitand-sshort-slong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-sshort-slong-of-slong-fix-y (equal (bitand-sshort-slong x (slong-fix y)) (bitand-sshort-slong x y)))
Theorem:
(defthm bitand-sshort-slong-slong-equiv-congruence-on-y (implies (slong-equiv y y-equiv) (equal (bitand-sshort-slong x y) (bitand-sshort-slong x y-equiv))) :rule-classes :congruence)