Greater-than relation of a value of type
Function:
(defun gt-slong-uint (x y) (declare (xargs :guard (and (slongp x) (uintp y)))) (gt-slong-slong x (slong-from-uint y)))
Theorem:
(defthm sintp-of-gt-slong-uint (sintp (gt-slong-uint x y)))
Theorem:
(defthm gt-slong-uint-of-slong-fix-x (equal (gt-slong-uint (slong-fix x) y) (gt-slong-uint x y)))
Theorem:
(defthm gt-slong-uint-slong-equiv-congruence-on-x (implies (slong-equiv x x-equiv) (equal (gt-slong-uint x y) (gt-slong-uint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-slong-uint-of-uint-fix-y (equal (gt-slong-uint x (uint-fix y)) (gt-slong-uint x y)))
Theorem:
(defthm gt-slong-uint-uint-equiv-congruence-on-y (implies (uint-equiv y y-equiv) (equal (gt-slong-uint x y) (gt-slong-uint x y-equiv))) :rule-classes :congruence)