Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-uint-sint (x y) (declare (xargs :guard (and (uintp x) (sintp y)))) (bitior-uint-uint x (uint-from-sint y)))
Theorem:
(defthm uintp-of-bitior-uint-sint (uintp (bitior-uint-sint x y)))
Theorem:
(defthm bitior-uint-sint-of-uint-fix-x (equal (bitior-uint-sint (uint-fix x) y) (bitior-uint-sint x y)))
Theorem:
(defthm bitior-uint-sint-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (bitior-uint-sint x y) (bitior-uint-sint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-uint-sint-of-sint-fix-y (equal (bitior-uint-sint x (sint-fix y)) (bitior-uint-sint x y)))
Theorem:
(defthm bitior-uint-sint-sint-equiv-congruence-on-y (implies (sint-equiv y y-equiv) (equal (bitior-uint-sint x y) (bitior-uint-sint x y-equiv))) :rule-classes :congruence)