Logical complement of a value of type
Function:
(defun lognot-uint (x) (declare (xargs :guard (and (uintp x)))) (sint-from-boolean (= (integer-from-uint x) 0)))
Theorem:
(defthm sintp-of-lognot-uint (sintp (lognot-uint x)))
Theorem:
(defthm lognot-uint-of-uint-fix-x (equal (lognot-uint (uint-fix x)) (lognot-uint x)))
Theorem:
(defthm lognot-uint-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (lognot-uint x) (lognot-uint x-equiv))) :rule-classes :congruence)