Basic equivalence relation for vttree structures.
Function:
(defun vttree-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (vttree-p acl2::x) (vttree-p acl2::y)))) (equal (vttree-fix acl2::x) (vttree-fix acl2::y)))
Theorem:
(defthm vttree-equiv-is-an-equivalence (and (booleanp (vttree-equiv x y)) (vttree-equiv x x) (implies (vttree-equiv x y) (vttree-equiv y x)) (implies (and (vttree-equiv x y) (vttree-equiv y z)) (vttree-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm vttree-equiv-implies-equal-vttree-fix-1 (implies (vttree-equiv acl2::x x-equiv) (equal (vttree-fix acl2::x) (vttree-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm vttree-fix-under-vttree-equiv (vttree-equiv (vttree-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-vttree-fix-1-forward-to-vttree-equiv (implies (equal (vttree-fix acl2::x) acl2::y) (vttree-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-vttree-fix-2-forward-to-vttree-equiv (implies (equal acl2::x (vttree-fix acl2::y)) (vttree-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vttree-equiv-of-vttree-fix-1-forward (implies (vttree-equiv (vttree-fix acl2::x) acl2::y) (vttree-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vttree-equiv-of-vttree-fix-2-forward (implies (vttree-equiv acl2::x (vttree-fix acl2::y)) (vttree-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)