Basic equivalence relation for call-graph structures.
Function:
(defun call-graph-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (call-graphp acl2::x) (call-graphp acl2::y)))) (equal (call-graph-fix acl2::x) (call-graph-fix acl2::y)))
Theorem:
(defthm call-graph-equiv-is-an-equivalence (and (booleanp (call-graph-equiv x y)) (call-graph-equiv x x) (implies (call-graph-equiv x y) (call-graph-equiv y x)) (implies (and (call-graph-equiv x y) (call-graph-equiv y z)) (call-graph-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm call-graph-equiv-implies-equal-call-graph-fix-1 (implies (call-graph-equiv acl2::x x-equiv) (equal (call-graph-fix acl2::x) (call-graph-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm call-graph-fix-under-call-graph-equiv (call-graph-equiv (call-graph-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-call-graph-fix-1-forward-to-call-graph-equiv (implies (equal (call-graph-fix acl2::x) acl2::y) (call-graph-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-call-graph-fix-2-forward-to-call-graph-equiv (implies (equal acl2::x (call-graph-fix acl2::y)) (call-graph-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm call-graph-equiv-of-call-graph-fix-1-forward (implies (call-graph-equiv (call-graph-fix acl2::x) acl2::y) (call-graph-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm call-graph-equiv-of-call-graph-fix-2-forward (implies (call-graph-equiv acl2::x (call-graph-fix acl2::y)) (call-graph-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)