Basic theorems about envp, generated by std::deflist.
Theorem:
(defthm envp-of-cons (equal (envp (cons acl2::a acl2::x)) (and (env-blockp acl2::a) (envp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-cdr-when-envp (implies (envp (double-rewrite acl2::x)) (envp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-when-not-consp (implies (not (consp acl2::x)) (equal (envp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm env-blockp-of-car-when-envp (implies (envp acl2::x) (env-blockp (car acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-envp-compound-recognizer (implies (envp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm envp-of-list-fix (implies (envp acl2::x) (envp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-sfix (iff (envp (sfix acl2::x)) (or (envp acl2::x) (not (setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-insert (iff (envp (insert acl2::a acl2::x)) (and (envp (sfix acl2::x)) (env-blockp acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-delete (implies (envp acl2::x) (envp (delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-mergesort (iff (envp (mergesort acl2::x)) (envp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-union (iff (envp (union acl2::x acl2::y)) (and (envp (sfix acl2::x)) (envp (sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-intersect-1 (implies (envp acl2::x) (envp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-intersect-2 (implies (envp acl2::y) (envp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-difference (implies (envp acl2::x) (envp (difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-duplicated-members (implies (envp acl2::x) (envp (duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-rev (equal (envp (rev acl2::x)) (envp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-append (equal (envp (append acl2::a acl2::b)) (and (envp (list-fix acl2::a)) (envp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-rcons (iff (envp (rcons acl2::a acl2::x)) (and (env-blockp acl2::a) (envp (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm env-blockp-when-member-equal-of-envp (and (implies (and (member-equal acl2::a acl2::x) (envp acl2::x)) (env-blockp acl2::a)) (implies (and (envp acl2::x) (member-equal acl2::a acl2::x)) (env-blockp acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (envp acl2::y)) (equal (envp acl2::x) (true-listp acl2::x))) (implies (and (envp acl2::y) (subsetp-equal acl2::x acl2::y)) (equal (envp acl2::x) (true-listp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-set-difference-equal (implies (envp acl2::x) (envp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-intersection-equal-1 (implies (envp (double-rewrite acl2::x)) (envp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-intersection-equal-2 (implies (envp (double-rewrite acl2::y)) (envp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-union-equal (equal (envp (union-equal acl2::x acl2::y)) (and (envp (list-fix acl2::x)) (envp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-take (implies (envp (double-rewrite acl2::x)) (iff (envp (take acl2::n acl2::x)) (or (env-blockp nil) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-repeat (iff (envp (repeat acl2::n acl2::x)) (or (env-blockp acl2::x) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm env-blockp-of-nth-when-envp (implies (envp acl2::x) (env-blockp (nth acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-update-nth (implies (envp (double-rewrite acl2::x)) (iff (envp (update-nth acl2::n acl2::y acl2::x)) (and (env-blockp acl2::y) (or (<= (nfix acl2::n) (len acl2::x)) (env-blockp nil))))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-butlast (implies (envp (double-rewrite acl2::x)) (envp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-nthcdr (implies (envp (double-rewrite acl2::x)) (envp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-last (implies (envp (double-rewrite acl2::x)) (envp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-remove (implies (envp acl2::x) (envp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm envp-of-revappend (equal (envp (revappend acl2::x acl2::y)) (and (envp (list-fix acl2::x)) (envp acl2::y))) :rule-classes ((:rewrite)))