Bitwise exclusive disjunction of a value of type
Function:
(defun bitxor-schar-sllong (x y) (declare (xargs :guard (and (scharp x) (sllongp y)))) (bitxor-sllong-sllong (sllong-from-schar x) y))
Theorem:
(defthm sllongp-of-bitxor-schar-sllong (sllongp (bitxor-schar-sllong x y)))
Theorem:
(defthm bitxor-schar-sllong-of-schar-fix-x (equal (bitxor-schar-sllong (schar-fix x) y) (bitxor-schar-sllong x y)))
Theorem:
(defthm bitxor-schar-sllong-schar-equiv-congruence-on-x (implies (schar-equiv x x-equiv) (equal (bitxor-schar-sllong x y) (bitxor-schar-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitxor-schar-sllong-of-sllong-fix-y (equal (bitxor-schar-sllong x (sllong-fix y)) (bitxor-schar-sllong x y)))
Theorem:
(defthm bitxor-schar-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (bitxor-schar-sllong x y) (bitxor-schar-sllong x y-equiv))) :rule-classes :congruence)