Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-ushort-sllong (x y) (declare (xargs :guard (and (ushortp x) (sllongp y)))) (bitior-sllong-sllong (sllong-from-ushort x) y))
Theorem:
(defthm sllongp-of-bitior-ushort-sllong (sllongp (bitior-ushort-sllong x y)))
Theorem:
(defthm bitior-ushort-sllong-of-ushort-fix-x (equal (bitior-ushort-sllong (ushort-fix x) y) (bitior-ushort-sllong x y)))
Theorem:
(defthm bitior-ushort-sllong-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (bitior-ushort-sllong x y) (bitior-ushort-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-ushort-sllong-of-sllong-fix-y (equal (bitior-ushort-sllong x (sllong-fix y)) (bitior-ushort-sllong x y)))
Theorem:
(defthm bitior-ushort-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (bitior-ushort-sllong x y) (bitior-ushort-sllong x y-equiv))) :rule-classes :congruence)