Bitwise exclusive disjunction of a value of type
Function:
(defun bitxor-sint-schar (x y) (declare (xargs :guard (and (sintp x) (scharp y)))) (bitxor-sint-sint x (sint-from-schar y)))
Theorem:
(defthm sintp-of-bitxor-sint-schar (sintp (bitxor-sint-schar x y)))
Theorem:
(defthm bitxor-sint-schar-of-sint-fix-x (equal (bitxor-sint-schar (sint-fix x) y) (bitxor-sint-schar x y)))
Theorem:
(defthm bitxor-sint-schar-sint-equiv-congruence-on-x (implies (sint-equiv x x-equiv) (equal (bitxor-sint-schar x y) (bitxor-sint-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitxor-sint-schar-of-schar-fix-y (equal (bitxor-sint-schar x (schar-fix y)) (bitxor-sint-schar x y)))
Theorem:
(defthm bitxor-sint-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (bitxor-sint-schar x y) (bitxor-sint-schar x y-equiv))) :rule-classes :congruence)