Bitwise conjunction of a value of type
Function:
(defun bitand-sint-uchar (x y) (declare (xargs :guard (and (sintp x) (ucharp y)))) (bitand-sint-sint x (sint-from-uchar y)))
Theorem:
(defthm sintp-of-bitand-sint-uchar (sintp (bitand-sint-uchar x y)))
Theorem:
(defthm bitand-sint-uchar-of-sint-fix-x (equal (bitand-sint-uchar (sint-fix x) y) (bitand-sint-uchar x y)))
Theorem:
(defthm bitand-sint-uchar-sint-equiv-congruence-on-x (implies (sint-equiv x x-equiv) (equal (bitand-sint-uchar x y) (bitand-sint-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-sint-uchar-of-uchar-fix-y (equal (bitand-sint-uchar x (uchar-fix y)) (bitand-sint-uchar x y)))
Theorem:
(defthm bitand-sint-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (bitand-sint-uchar x y) (bitand-sint-uchar x y-equiv))) :rule-classes :congruence)