Subtraction of a value of type
Function:
(defun sub-ushort-uchar (x y) (declare (xargs :guard (and (ushortp x) (ucharp y) (sub-ushort-uchar-okp x y)))) (sub-sint-sint (sint-from-ushort x) (sint-from-uchar y)))
Theorem:
(defthm sintp-of-sub-ushort-uchar (sintp (sub-ushort-uchar x y)))
Theorem:
(defthm sub-ushort-uchar-of-ushort-fix-x (equal (sub-ushort-uchar (ushort-fix x) y) (sub-ushort-uchar x y)))
Theorem:
(defthm sub-ushort-uchar-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (sub-ushort-uchar x y) (sub-ushort-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sub-ushort-uchar-of-uchar-fix-y (equal (sub-ushort-uchar x (uchar-fix y)) (sub-ushort-uchar x y)))
Theorem:
(defthm sub-ushort-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (sub-ushort-uchar x y) (sub-ushort-uchar x y-equiv))) :rule-classes :congruence)