Division of a value of type
Function:
(defun div-ulong-sllong (x y) (declare (xargs :guard (and (ulongp x) (sllongp y) (div-ulong-sllong-okp x y)))) (div-ullong-ullong (ullong-from-ulong x) (ullong-from-sllong y)))
Theorem:
(defthm ullongp-of-div-ulong-sllong (ullongp (div-ulong-sllong x y)))
Theorem:
(defthm div-ulong-sllong-of-ulong-fix-x (equal (div-ulong-sllong (ulong-fix x) y) (div-ulong-sllong x y)))
Theorem:
(defthm div-ulong-sllong-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (div-ulong-sllong x y) (div-ulong-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm div-ulong-sllong-of-sllong-fix-y (equal (div-ulong-sllong x (sllong-fix y)) (div-ulong-sllong x y)))
Theorem:
(defthm div-ulong-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (div-ulong-sllong x y) (div-ulong-sllong x y-equiv))) :rule-classes :congruence)