Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-ushort-schar (x y) (declare (xargs :guard (and (ushortp x) (scharp y)))) (bitior-sint-sint (sint-from-ushort x) (sint-from-schar y)))
Theorem:
(defthm sintp-of-bitior-ushort-schar (sintp (bitior-ushort-schar x y)))
Theorem:
(defthm bitior-ushort-schar-of-ushort-fix-x (equal (bitior-ushort-schar (ushort-fix x) y) (bitior-ushort-schar x y)))
Theorem:
(defthm bitior-ushort-schar-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (bitior-ushort-schar x y) (bitior-ushort-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-ushort-schar-of-schar-fix-y (equal (bitior-ushort-schar x (schar-fix y)) (bitior-ushort-schar x y)))
Theorem:
(defthm bitior-ushort-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (bitior-ushort-schar x y) (bitior-ushort-schar x y-equiv))) :rule-classes :congruence)