Bitwise conjunction of a value of type
Function:
(defun bitand-uchar-sint (x y) (declare (xargs :guard (and (ucharp x) (sintp y)))) (bitand-sint-sint (sint-from-uchar x) y))
Theorem:
(defthm sintp-of-bitand-uchar-sint (sintp (bitand-uchar-sint x y)))
Theorem:
(defthm bitand-uchar-sint-of-uchar-fix-x (equal (bitand-uchar-sint (uchar-fix x) y) (bitand-uchar-sint x y)))
Theorem:
(defthm bitand-uchar-sint-uchar-equiv-congruence-on-x (implies (uchar-equiv x x-equiv) (equal (bitand-uchar-sint x y) (bitand-uchar-sint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-uchar-sint-of-sint-fix-y (equal (bitand-uchar-sint x (sint-fix y)) (bitand-uchar-sint x y)))
Theorem:
(defthm bitand-uchar-sint-sint-equiv-congruence-on-y (implies (sint-equiv y y-equiv) (equal (bitand-uchar-sint x y) (bitand-uchar-sint x y-equiv))) :rule-classes :congruence)