Right shift of a value of type
Function:
(defun shr-uint-uint (x y) (declare (xargs :guard (and (uintp x) (uintp y) (shr-uint-uint-okp x y)))) (shr-uint x (integer-from-uint y)))
Theorem:
(defthm uintp-of-shr-uint-uint (uintp (shr-uint-uint x y)))
Theorem:
(defthm shr-uint-uint-of-uint-fix-x (equal (shr-uint-uint (uint-fix x) y) (shr-uint-uint x y)))
Theorem:
(defthm shr-uint-uint-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (shr-uint-uint x y) (shr-uint-uint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm shr-uint-uint-of-uint-fix-y (equal (shr-uint-uint x (uint-fix y)) (shr-uint-uint x y)))
Theorem:
(defthm shr-uint-uint-uint-equiv-congruence-on-y (implies (uint-equiv y y-equiv) (equal (shr-uint-uint x y) (shr-uint-uint x y-equiv))) :rule-classes :congruence)