Equality of a value of type
Function:
(defun eq-ulong-uint (x y) (declare (xargs :guard (and (ulongp x) (uintp y)))) (eq-ulong-ulong x (ulong-from-uint y)))
Theorem:
(defthm sintp-of-eq-ulong-uint (sintp (eq-ulong-uint x y)))
Theorem:
(defthm eq-ulong-uint-of-ulong-fix-x (equal (eq-ulong-uint (ulong-fix x) y) (eq-ulong-uint x y)))
Theorem:
(defthm eq-ulong-uint-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (eq-ulong-uint x y) (eq-ulong-uint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-ulong-uint-of-uint-fix-y (equal (eq-ulong-uint x (uint-fix y)) (eq-ulong-uint x y)))
Theorem:
(defthm eq-ulong-uint-uint-equiv-congruence-on-y (implies (uint-equiv y y-equiv) (equal (eq-ulong-uint x y) (eq-ulong-uint x y-equiv))) :rule-classes :congruence)