Equality of a value of type
Function:
(defun eq-schar-sint (x y) (declare (xargs :guard (and (scharp x) (sintp y)))) (eq-sint-sint (sint-from-schar x) y))
Theorem:
(defthm sintp-of-eq-schar-sint (sintp (eq-schar-sint x y)))
Theorem:
(defthm eq-schar-sint-of-schar-fix-x (equal (eq-schar-sint (schar-fix x) y) (eq-schar-sint x y)))
Theorem:
(defthm eq-schar-sint-schar-equiv-congruence-on-x (implies (schar-equiv x x-equiv) (equal (eq-schar-sint x y) (eq-schar-sint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-schar-sint-of-sint-fix-y (equal (eq-schar-sint x (sint-fix y)) (eq-schar-sint x y)))
Theorem:
(defthm eq-schar-sint-sint-equiv-congruence-on-y (implies (sint-equiv y y-equiv) (equal (eq-schar-sint x y) (eq-schar-sint x y-equiv))) :rule-classes :congruence)