Addition of a value of type
Function:
(defun add-uint-ulong (x y) (declare (xargs :guard (and (uintp x) (ulongp y)))) (add-ulong-ulong (ulong-from-uint x) y))
Theorem:
(defthm ulongp-of-add-uint-ulong (ulongp (add-uint-ulong x y)))
Theorem:
(defthm add-uint-ulong-of-uint-fix-x (equal (add-uint-ulong (uint-fix x) y) (add-uint-ulong x y)))
Theorem:
(defthm add-uint-ulong-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (add-uint-ulong x y) (add-uint-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm add-uint-ulong-of-ulong-fix-y (equal (add-uint-ulong x (ulong-fix y)) (add-uint-ulong x y)))
Theorem:
(defthm add-uint-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (add-uint-ulong x y) (add-uint-ulong x y-equiv))) :rule-classes :congruence)