Bitwise conjunction of a value of type
Function:
(defun bitand-sllong-ushort (x y) (declare (xargs :guard (and (sllongp x) (ushortp y)))) (bitand-sllong-sllong x (sllong-from-ushort y)))
Theorem:
(defthm sllongp-of-bitand-sllong-ushort (sllongp (bitand-sllong-ushort x y)))
Theorem:
(defthm bitand-sllong-ushort-of-sllong-fix-x (equal (bitand-sllong-ushort (sllong-fix x) y) (bitand-sllong-ushort x y)))
Theorem:
(defthm bitand-sllong-ushort-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (bitand-sllong-ushort x y) (bitand-sllong-ushort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-sllong-ushort-of-ushort-fix-y (equal (bitand-sllong-ushort x (ushort-fix y)) (bitand-sllong-ushort x y)))
Theorem:
(defthm bitand-sllong-ushort-ushort-equiv-congruence-on-y (implies (ushort-equiv y y-equiv) (equal (bitand-sllong-ushort x y) (bitand-sllong-ushort x y-equiv))) :rule-classes :congruence)