Greater-than relation of a value of type
Function:
(defun gt-sllong-ulong (x y) (declare (xargs :guard (and (sllongp x) (ulongp y)))) (gt-ullong-ullong (ullong-from-sllong x) (ullong-from-ulong y)))
Theorem:
(defthm sintp-of-gt-sllong-ulong (sintp (gt-sllong-ulong x y)))
Theorem:
(defthm gt-sllong-ulong-of-sllong-fix-x (equal (gt-sllong-ulong (sllong-fix x) y) (gt-sllong-ulong x y)))
Theorem:
(defthm gt-sllong-ulong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (gt-sllong-ulong x y) (gt-sllong-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-sllong-ulong-of-ulong-fix-y (equal (gt-sllong-ulong x (ulong-fix y)) (gt-sllong-ulong x y)))
Theorem:
(defthm gt-sllong-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (gt-sllong-ulong x y) (gt-sllong-ulong x y-equiv))) :rule-classes :congruence)