Greater-than-or-equal-to relation of a value of type
Function:
(defun ge-ulong-ushort (x y) (declare (xargs :guard (and (ulongp x) (ushortp y)))) (ge-ulong-ulong x (ulong-from-ushort y)))
Theorem:
(defthm sintp-of-ge-ulong-ushort (sintp (ge-ulong-ushort x y)))
Theorem:
(defthm ge-ulong-ushort-of-ulong-fix-x (equal (ge-ulong-ushort (ulong-fix x) y) (ge-ulong-ushort x y)))
Theorem:
(defthm ge-ulong-ushort-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (ge-ulong-ushort x y) (ge-ulong-ushort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm ge-ulong-ushort-of-ushort-fix-y (equal (ge-ulong-ushort x (ushort-fix y)) (ge-ulong-ushort x y)))
Theorem:
(defthm ge-ulong-ushort-ushort-equiv-congruence-on-y (implies (ushort-equiv y y-equiv) (equal (ge-ulong-ushort x y) (ge-ulong-ushort x y-equiv))) :rule-classes :congruence)