Bitwise conjunction of a value of type
Function:
(defun bitand-ushort-schar (x y) (declare (xargs :guard (and (ushortp x) (scharp y)))) (bitand-sint-sint (sint-from-ushort x) (sint-from-schar y)))
Theorem:
(defthm sintp-of-bitand-ushort-schar (sintp (bitand-ushort-schar x y)))
Theorem:
(defthm bitand-ushort-schar-of-ushort-fix-x (equal (bitand-ushort-schar (ushort-fix x) y) (bitand-ushort-schar x y)))
Theorem:
(defthm bitand-ushort-schar-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (bitand-ushort-schar x y) (bitand-ushort-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-ushort-schar-of-schar-fix-y (equal (bitand-ushort-schar x (schar-fix y)) (bitand-ushort-schar x y)))
Theorem:
(defthm bitand-ushort-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (bitand-ushort-schar x y) (bitand-ushort-schar x y-equiv))) :rule-classes :congruence)