Left shift of a value of type
Function:
(defun shl-slong-sint (x y) (declare (xargs :guard (and (slongp x) (sintp y) (shl-slong-sint-okp x y)))) (shl-slong x (integer-from-sint y)))
Theorem:
(defthm slongp-of-shl-slong-sint (slongp (shl-slong-sint x y)))
Theorem:
(defthm shl-slong-sint-of-slong-fix-x (equal (shl-slong-sint (slong-fix x) y) (shl-slong-sint x y)))
Theorem:
(defthm shl-slong-sint-slong-equiv-congruence-on-x (implies (slong-equiv x x-equiv) (equal (shl-slong-sint x y) (shl-slong-sint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm shl-slong-sint-of-sint-fix-y (equal (shl-slong-sint x (sint-fix y)) (shl-slong-sint x y)))
Theorem:
(defthm shl-slong-sint-sint-equiv-congruence-on-y (implies (sint-equiv y y-equiv) (equal (shl-slong-sint x y) (shl-slong-sint x y-equiv))) :rule-classes :congruence)