Greater-than relation of a value of type
Function:
(defun gt-sllong-uchar (x y) (declare (xargs :guard (and (sllongp x) (ucharp y)))) (gt-sllong-sllong x (sllong-from-uchar y)))
Theorem:
(defthm sintp-of-gt-sllong-uchar (sintp (gt-sllong-uchar x y)))
Theorem:
(defthm gt-sllong-uchar-of-sllong-fix-x (equal (gt-sllong-uchar (sllong-fix x) y) (gt-sllong-uchar x y)))
Theorem:
(defthm gt-sllong-uchar-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (gt-sllong-uchar x y) (gt-sllong-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm gt-sllong-uchar-of-uchar-fix-y (equal (gt-sllong-uchar x (uchar-fix y)) (gt-sllong-uchar x y)))
Theorem:
(defthm gt-sllong-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (gt-sllong-uchar x y) (gt-sllong-uchar x y-equiv))) :rule-classes :congruence)