Greater-than-or-equal-to relation of a value of type
Function:
(defun ge-slong-uchar (x y) (declare (xargs :guard (and (slongp x) (ucharp y)))) (ge-slong-slong x (slong-from-uchar y)))
Theorem:
(defthm sintp-of-ge-slong-uchar (sintp (ge-slong-uchar x y)))
Theorem:
(defthm ge-slong-uchar-of-slong-fix-x (equal (ge-slong-uchar (slong-fix x) y) (ge-slong-uchar x y)))
Theorem:
(defthm ge-slong-uchar-slong-equiv-congruence-on-x (implies (slong-equiv x x-equiv) (equal (ge-slong-uchar x y) (ge-slong-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm ge-slong-uchar-of-uchar-fix-y (equal (ge-slong-uchar x (uchar-fix y)) (ge-slong-uchar x y)))
Theorem:
(defthm ge-slong-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (ge-slong-uchar x y) (ge-slong-uchar x y-equiv))) :rule-classes :congruence)