Multiplication of a value of type
Function:
(defun mul-sllong-slong (x y) (declare (xargs :guard (and (sllongp x) (slongp y) (mul-sllong-slong-okp x y)))) (mul-sllong-sllong x (sllong-from-slong y)))
Theorem:
(defthm sllongp-of-mul-sllong-slong (sllongp (mul-sllong-slong x y)))
Theorem:
(defthm mul-sllong-slong-of-sllong-fix-x (equal (mul-sllong-slong (sllong-fix x) y) (mul-sllong-slong x y)))
Theorem:
(defthm mul-sllong-slong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (mul-sllong-slong x y) (mul-sllong-slong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm mul-sllong-slong-of-slong-fix-y (equal (mul-sllong-slong x (slong-fix y)) (mul-sllong-slong x y)))
Theorem:
(defthm mul-sllong-slong-slong-equiv-congruence-on-y (implies (slong-equiv y y-equiv) (equal (mul-sllong-slong x y) (mul-sllong-slong x y-equiv))) :rule-classes :congruence)