(ocst-statement-conc6 abnf::cst) → abnf::cstss
Function:
(defun ocst-statement-conc6 (abnf::cst) (declare (xargs :guard (abnf::treep abnf::cst))) (declare (xargs :guard (and (ocst-matchp abnf::cst "statement") (equal (ocst-statement-conc? abnf::cst) 6)))) (let ((__function__ 'ocst-statement-conc6)) (declare (ignorable __function__)) (abnf::tree-nonleaf->branches abnf::cst)))
Theorem:
(defthm tree-list-listp-of-ocst-statement-conc6 (b* ((abnf::cstss (ocst-statement-conc6 abnf::cst))) (abnf::tree-list-listp abnf::cstss)) :rule-classes :rewrite)
Theorem:
(defthm ocst-statement-conc6-match (implies (and (ocst-matchp abnf::cst "statement") (equal (ocst-statement-conc? abnf::cst) 6)) (b* ((abnf::cstss (ocst-statement-conc6 abnf::cst))) (ocst-list-list-conc-matchp abnf::cstss "expression"))) :rule-classes :rewrite)
Theorem:
(defthm ocst-statement-conc6-of-tree-fix-cst (equal (ocst-statement-conc6 (abnf::tree-fix abnf::cst)) (ocst-statement-conc6 abnf::cst)))
Theorem:
(defthm ocst-statement-conc6-tree-equiv-congruence-on-cst (implies (abnf::tree-equiv abnf::cst cst-equiv) (equal (ocst-statement-conc6 abnf::cst) (ocst-statement-conc6 cst-equiv))) :rule-classes :congruence)