Subtraction of a value of type
Function:
(defun sub-schar-schar (x y) (declare (xargs :guard (and (scharp x) (scharp y) (sub-schar-schar-okp x y)))) (sub-sint-sint (sint-from-schar x) (sint-from-schar y)))
Theorem:
(defthm sintp-of-sub-schar-schar (sintp (sub-schar-schar x y)))
Theorem:
(defthm sub-schar-schar-of-schar-fix-x (equal (sub-schar-schar (schar-fix x) y) (sub-schar-schar x y)))
Theorem:
(defthm sub-schar-schar-schar-equiv-congruence-on-x (implies (schar-equiv x x-equiv) (equal (sub-schar-schar x y) (sub-schar-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sub-schar-schar-of-schar-fix-y (equal (sub-schar-schar x (schar-fix y)) (sub-schar-schar x y)))
Theorem:
(defthm sub-schar-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (sub-schar-schar x y) (sub-schar-schar x y-equiv))) :rule-classes :congruence)