Bitwise exclusive disjunction of a value of type
Function:
(defun bitxor-uint-schar (x y) (declare (xargs :guard (and (uintp x) (scharp y)))) (bitxor-uint-uint x (uint-from-schar y)))
Theorem:
(defthm uintp-of-bitxor-uint-schar (uintp (bitxor-uint-schar x y)))
Theorem:
(defthm bitxor-uint-schar-of-uint-fix-x (equal (bitxor-uint-schar (uint-fix x) y) (bitxor-uint-schar x y)))
Theorem:
(defthm bitxor-uint-schar-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (bitxor-uint-schar x y) (bitxor-uint-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitxor-uint-schar-of-schar-fix-y (equal (bitxor-uint-schar x (schar-fix y)) (bitxor-uint-schar x y)))
Theorem:
(defthm bitxor-uint-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (bitxor-uint-schar x y) (bitxor-uint-schar x y-equiv))) :rule-classes :congruence)