Bitwise inclusive disjunction of a value of type
Function:
(defun bitior-uint-uchar (x y) (declare (xargs :guard (and (uintp x) (ucharp y)))) (bitior-uint-uint x (uint-from-uchar y)))
Theorem:
(defthm uintp-of-bitior-uint-uchar (uintp (bitior-uint-uchar x y)))
Theorem:
(defthm bitior-uint-uchar-of-uint-fix-x (equal (bitior-uint-uchar (uint-fix x) y) (bitior-uint-uchar x y)))
Theorem:
(defthm bitior-uint-uchar-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (bitior-uint-uchar x y) (bitior-uint-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitior-uint-uchar-of-uchar-fix-y (equal (bitior-uint-uchar x (uchar-fix y)) (bitior-uint-uchar x y)))
Theorem:
(defthm bitior-uint-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (bitior-uint-uchar x y) (bitior-uint-uchar x y-equiv))) :rule-classes :congruence)