Bitwise conjunction of a value of type
Function:
(defun bitand-uint-sshort (x y) (declare (xargs :guard (and (uintp x) (sshortp y)))) (bitand-uint-uint x (uint-from-sshort y)))
Theorem:
(defthm uintp-of-bitand-uint-sshort (uintp (bitand-uint-sshort x y)))
Theorem:
(defthm bitand-uint-sshort-of-uint-fix-x (equal (bitand-uint-sshort (uint-fix x) y) (bitand-uint-sshort x y)))
Theorem:
(defthm bitand-uint-sshort-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (bitand-uint-sshort x y) (bitand-uint-sshort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-uint-sshort-of-sshort-fix-y (equal (bitand-uint-sshort x (sshort-fix y)) (bitand-uint-sshort x y)))
Theorem:
(defthm bitand-uint-sshort-sshort-equiv-congruence-on-y (implies (sshort-equiv y y-equiv) (equal (bitand-uint-sshort x y) (bitand-uint-sshort x y-equiv))) :rule-classes :congruence)