(sparseint$-equal x y) → equal
Function:
(defun sparseint$-equal$inline (x y) (declare (xargs :guard (and (sparseint$-p x) (sparseint$-p y)))) (let ((__function__ 'sparseint$-equal)) (declare (ignorable __function__)) (sparseint$-equal-offset x 0 y)))
Theorem:
(defthm booleanp-of-sparseint$-equal (b* ((equal (sparseint$-equal$inline x y))) (booleanp equal)) :rule-classes :type-prescription)
Theorem:
(defthm sparseint$-equal-correct (b* ((common-lisp::?equal (sparseint$-equal$inline x y))) (equal equal (equal (sparseint$-val x) (sparseint$-val y)))))
Theorem:
(defthm sparseint$-equal$inline-of-sparseint$-fix-x (equal (sparseint$-equal$inline (sparseint$-fix x) y) (sparseint$-equal$inline x y)))
Theorem:
(defthm sparseint$-equal$inline-sparseint$-equiv-congruence-on-x (implies (sparseint$-equiv x x-equiv) (equal (sparseint$-equal$inline x y) (sparseint$-equal$inline x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-equal$inline-of-sparseint$-fix-y (equal (sparseint$-equal$inline x (sparseint$-fix y)) (sparseint$-equal$inline x y)))
Theorem:
(defthm sparseint$-equal$inline-sparseint$-equiv-congruence-on-y (implies (sparseint$-equiv y y-equiv) (equal (sparseint$-equal$inline x y) (sparseint$-equal$inline x y-equiv))) :rule-classes :congruence)